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A CLASS OF RIEMANNIAN HOMOGENEOUS SPACES

ISAAC CHAVEL

In M. Berger’s classification [1] of normal Riemannian homogeneous spaces
of strictly positive curvature, appear various classes of Riemannian homogene-
ous metrics which can be put on odd-dimensional spheres — but which do not
have constant curvature. In this paper, we investigate one of these classes,
viz. {SU(n + 1) X R/SU(n) X R}, = ,,,M? (cf. details below). In particular,
we (i) calculate the conjugate locus (in the tangent space) of any point, (ii)
calculate the totally geodesic submanifolds of constant curvature, and (iii)
consider closed geodesics in M? and their relationship to a lemma of
W. Klingenberg [5, Theorem 1].-

§ 1 concerns itself with the explicit construction of M7, and §2 is devoted
to (i). The key tool of §2 is the writing of Jacobi’s equations of geodesic
deviation in the canonical connection of G/H. (This connection is not the
Levi-Civita connection, but nevertheless has the same geodesics.) For the
necessary background, the reader is referred to {31. In § 3 we dispose of (ii),
in § 4 we calculate the pinching of M7, and in §5 we discuss (iii). §5 is a
direct generalization of M. Berger’s argument in [2, pp. 9-12], and § 6 consists
of remarks relating the spaces M7 to problems in Riemannian geometry.

1. The space M?

We first let E;, denote the matrix, whose r-th row and s-th column are
given by 8;,8,,, i.e., E;; has a 1 in the j-th row and k-th column and zeros
elsewhere, and we set

A.ik = \/ —1 (Ejj - EA'A-) »

Bjx: - (Ejk - E,&-J‘) P

Cip = v —1 (Ei. + Ep) .
Then a basis of a, = Lie algebra of SU(n + 1) is given by {4,,,,:1 =
1,.--,n;B,;,C,;: 1 <r<j< n+ 1}. For a bi-invariant metric on a, we
choose

X, Yy = —%trace XY .
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One then calculates an orthonormal basis of a,_, C a, (where q,, ., is imbedded
in q, in the usual manner) to be {S;:j=1,.---,n—1;B,,,C,;: 1 <r <j
< n} where

J
S, = (I/aj)z§ IAL,L+1 ’

a; = (iG + D/ .

An orthonormal basis of 1 = orthogonal complement of a,_, in a, is then
seen to be {S,, B, 1.1, Cy.ni =1, -+ -, n + 1}. For completeness we list the
Lie multiplication table:

[A'rj7 Au] =0 ’

[4,;,By] =0,,C,, — 0,,Ci — 05Cyi 4+ 0Cy
[Arj7 CuJ = “5rkBrz - 5rLBrk + 5jkle + 5ﬂBﬂc ’
[Brj7 Bkl.-] - 5jkBrz - 5jLBrk - 5rkle + 511Bjk y
[Brj’ Ckl] = 5_11Crk + 5jkCrl - 5rtcﬂc e 5r1.:CjL ’
[era Cnl = ~5jkBrz - 5jLBrk - 5rkBﬂ - 5rlBjk .

As usual, [a,_,, ml < nt. Furthermore, by direct calculation one obtains

( 1 ) [an—b Sn] = 0 ’
(2) dim {a,_,, Bynod =21 — 1.

One therefore obtains: Ad(SU(n)) acts transitively on the unit sphere in m
spanned by (B ,,,Cjn3i=1,---,n}

We now consider the direct orthogonal sum of a, ® R = g,, R = real
numbers, with D a basis clement of R of length 1, [a,, R] = 0, and set

b, = linear span {S,, - - -, S,.,,cosa-S, +sina-D,B,,,C,;: 1 <r<j<n},

m, = linear span {sin«-S, — cosa-D,B; ,,,,Cjn: 1 <j< 0},

0<a<=x/2, G, =expg,, H,=expl, and M? = G,/H, where exp
denotes the exponential map of the Lie algebra to the Lie group it generates.
r: G, — M? denotes the canonical projection, and dr, the induced linear map,
identifies 11, with the tangent space of M?* at 0 = =(H ). A Riemannian metric
on M" is obtained by restricting the metric on g, to m, X m, and then
translating with G,. Of course M? is now Riemannian homogeneous; also M?
is topologically a sphere. From (1, 2) we have

Proposition 1. Ad(H,) is transitive on the unit tangent sphere of the
orthogonal complement of sinw .S, — cosa-D in m,. '
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2. The conjugate locus of M’

Of course, by the homogeneity of M?, it suffices to consider the conjugate
locus of 0 = =(H,). An immediate consequence of Proposition 1 is

Proposition 2. The conjugate locus of 0 = x(H,) in m, is a hypersurface
of revolution about the line generated by sin «-S,, — cos a-D.

We set

e = sine-S, —cosa-D ,
€51 = BJ,nH ’

e; =Ciners j=1,..--,n.

Then by Proposition 2, the complete conjugate locus is known by finding the
conjugate points of o along the geodesics emanating from ¢ with initial unit
velocity vector:

§, = e,cos8 + e sind, fel—mn,x].

&, is completed to an orthonormal basis of m,, viz., m, = linear span {£,,{, =
—e,sind + e,¢cos b, e, -+ -, e}

Let ¢,(f) denote the geodesic satisfying ¢,(0) = o, £(0) = &,. To solve
Jacobi’s equations along ¢,(f), we write them in the canonical connection (of
the second kind) —cf {3].

The torsion T and curvature B, tensors of the canonical connection, are
given at O by

T(X) Y) = [X, Y]m,, » B(Xs Y)Z - [[X, Y][-}asz] -

For future reference we list the torsion and curvature relative to the basis
€y, -+ +, €,,. First we set

(3) B=m+ 1 Gina, = {2(n + 1)/n}"sine .
Then

(4) T(ey, 5 1) = Bey »

(5) T(ey &) = —pes.,

(6) T(ey 1> ) = e, .

Otherwise, T(e,,¢,) =0, Ble,e;) e, = Ble;,e)-¢,=0 for al j, k =
0,1, - --,2n. Henceforth, assume j = k. Then

€1 = —04s€;  + 058, »
(7) B(er-UeZk—l)' _ ' ’
ey = 04&; — 08 ,



16 ISAAC CHAVEL"

e—:25'e'+(2—ﬁ2)e
(8) B(e'_»,‘"_,e!.- ){ fs-t js=2j 23‘,
v € = _zajsezj—l -2 - ,Bl)enw, ,
€y 1 = Ops€ay + 0;:€0
(9) Ble,, ,.e, ),[231 ks€2y 15€2
FERERST €,y = _5“@”_1 — 5jseZk L
€t = —Bnsrsos + Bpueres »
(10) Ble,; e, )-{2 * es€rs1 T 0546
§ * €5 = —Ok€y + O0p€y -

Now let T, of B, be the linear transformations given by

(11) Ta‘X = T(EJ7X) 3
(12) B, - X = B(¢,, X)¢, .

Then relative to the basis &,, e,, - - -, €,,, We have

(13) T,-%, = Be,, B,.¢, =0,

(14 T,-e, = —p¢,, B,-e, = (4 — BO(sin’ He, ,
(15) T,-ey_, = Blcos Qe , B,-€,,_, = (sin* e, _, ,

(16) T, ey = —p(cos Deyy_; B,-e,, = (sin’ §e,, ,

where k > 2. In particular, T, and B, have the same invariant subspaces

for all 4.
Asin {3], leta,(¢), i = 1, - - -, 2n, be a parallel (with respect to the canonical

connection) orthonormal frame along ¢,(r) for which ¢,(0) = £,, a,0) = e,,
n

i=2,---,2n. If we write for any vector field 5(¢) along &,, 7(f) = 3] 5(Da, (D),
i=1

then Jacobi’s equations along ¢, read as:
1) A B @b
17 (772) + (,3 0 /\np, Tl @- B sin* 4 \ 5, ’

Tor 1\ 0 —Bcosd 7721:-1) (sinzﬁ 0 )(772,‘_1)_
(18) (7;2k 1) + (,Bcosﬁ 0 )(Uzk + 0 sin*d/\pw | 0,
k = 2,-..n. Thus one obtains a basis of solutions vanishing at ¢t = 0,
A9, -+, 4,,.(2) such that

19 » <A2k—i(t)1 aj(t)> =0,

for allt, where i = 0,1; k=1,---,n;j=1,--.,2k - 2,2k + 1,..-,2n,
and »

(20) b Aleg = kia(0)
dt
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i=1,.--,2n,k, = constant, where D/dt denotes covariant differentiation in
the canonical connection along ¢,(¢). Using the Remark of [4] and (20) one
sees that 4,, - - -, A,, form a basis of isotropic Jacobi fields along e,, £;(0) #
+¢,; otherwise, no Jacobi fields are isotropic.

We turn to the solving of (17). Set

21) r =14 — pysin*é,
22) o = (4sin* 6 + p*cos? ).

Then the eigenvalues 2 of (17) are easily seen to be £ =0 and 1= ++/ —1 4.
Standard calculation yields

(23) A = {— (/B — (8/0) sin atjay(t) + {1 — cos of}as) ,
24 A(t) = {(8/0)(1 — cos at)}a,(t) + (sin ab)a?) .

Conjugate points obtained from linear combinations of 4, and 4, have path
values ¢ for which

(25) 0= f(1) = (28/0)1 — cosat) + (y/Btsinat .
Also,

f( =1{28 + n/g} sin ot + (yo/P)tsinat .

Now f(2zk/s) = O for all integers k. Indeed these values are precisely the
zeros of A,(t). However, for sufficiently small |¢] > O, f(¢) is given by f(t) =
{Bo + Go/P} + --- > 0; and f'(2zk/o) > O if and only if y(8) # O, i.e.,
&, +# +e, Thus, for &, + +e, and every integer X, a linear combination of
A, and A, vanishes for some ¢ ¢ (2xk /g, 2z(k + 1)/¢). Note that the Jacobi
field in question is nonisotropic.
We now turn to (18). Since the matrices
T = ( 0 ~fBcos 6) ,

o _ (sin* 8 0
Bcos é 0 ”?“( )

0 sin” 0
commute, the system can be changed in the usual manner by letting
(bzk—l(t)) = exp (_t_f]') . (a-y.‘_](t)),
bzk(t) 2 azk(t) !
and 7 = fy_10p_y + Hub. The result is then

7%;:4 + (‘72/4);721.--1 =0,
e+ @D, =0,
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and therefore A,,_(t) = singt/2:b,,_ (1), A, (t) = sin g2/2-b,,(t). Geometri-
cally, b,,_,(t), b, () are Riemannian-parallel orthonormal vector fields with
initial values e, _,, €,, respectively, and ¢*/4 is the sectional curvature of the
2-sections (¢5(t), b, _(¢)) and (g}(2), b,, (2)) for all ¢; cf. [3, p. 244]. The zeros
of A, - -, A,, have arc values ¢t = 2rk/g. We summarize our results in

Theorem 1. Let ¢: (— o0, 00) — M2, [|¢'|| = 1, &(0) = 0 be a geodesic in
M?, 0 the angle from ¢, to ¢ (0), and 8 and ¢ as given in (3) and (22)
respectively. Then all isotropic Jacobi fields along ¢ vanish for t = 2rk/a,
k=0,41,+2,.--, and there exists a non-isotropic Jocobi field along ¢
vanishing for t = 0 and some t, < 2n/c whenever ¢(0) = +e, For ¢(0) =
+e,, no Jacobi fields along e are isotropic, and all Jacobi fields vanish for

= 2rk[/g = 2zk[B. The first conjugate locus of o therefore consists entirely
of non-isotropic conjugate points, and the generating set of the conjugate locus,
in m,, in the (e, e,)-plane is given by the solutions of (25) for each 8, where
7(0), o(@)are given by (21), (22). Finally, the generating set is symmetric with
respect to the e;axis and e-axis.

3. Totally geodesic submanifolds of constant curvature

Let m°® be a subspace of m,. Then Theorem 2 of [7] states that the subset
Exp m® (where Exp is the Riemannian exponential map) is a totally geodesic
submanifold of G/H if for every X,Y,Zem’, T(X,Y) and B(X, Y)Z e m".
(This is not A. Sagle’s original statement of the theorem. To pass from his
formulation to ours, one uses [3, (3)].) We remark that Exp m’ is homogeneous
by (i) Sagle’s explicit construction and (ii) an unpublished result of S. Koba-
yashi that every totally geodesic submanifold of a homogeneous space is homo-

geneous.
For each k = 1, - - -, n, let ¥V, be the subspace of m, generated by e,,_,, ;.
Theorem 2. Let m® be any subspace of m, generated by unit vectors
X, -, X, where X, eV, k=1,.-.,n Then Expm® is a totally geodesic

submanifold, of constant curvature 1, of M*. Furthermore, n is the maximal
dimension for the total geodesy of a submanifold of M™ of constant curvature
1 for all o when n > 1, and for « < z/2 where n = 1. Finally, the subspace
m® described is the only subspace of m, generating a totally geodesic
submanifold of constant curvature 1 through o.

Proof. First, for any X, Y em®, T(X,Y) = 0; and X, Y, Z e m’ implies
B(X, Y)Z ¢ m° by checking (7)-(10). Also, since T restricted to m° X m° vanishes
identically, we have that B(X, Y)Z = R(X, Y)Z for all X,Y,Z em", where
R(X, Y)Z denotes the Riemannian curvature tensor; cf. [3, (3)]. One checks
that the Riemannian sectional curvature is 1. To increase the dimension of m®
would either (i) yield a non-trivial projection of m’ onto e, which would
contradict constant curvature assumption (if not also total geodesy), or (ii),
for some kK = 1, .-, n, yield a projection of m’ onto all of ¥, which would
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contradict total geodesy by (6). The last statement in the theorem also follows
from' (i) and (ii).

4. Riemannian curvature and the pinching of M7

R denotes the Riemannian curvature tensor of M*, R, the linear transfor-
mation R,-Y = R(&,, Y)&,. Then by (14) of [3], we have

Ro - Bo - —;.‘(Ta)z s

which implies
Ry = (B/4)-E,
R,-e, = {B*/4 + (4 — ) sin* Gle, ,
R, ey, = {f/4cos’ 6 + sin*Gley_, ,
R,-e,, = {B*/4 cos?§ + sin® Gey,; , k=2,...,n.

Therefore the set curv (M?) of real numbers assumed as values of sectional
curvatures is given by
(26) curv (M?) = [(n + 1) sin®* «/2n, 4 — (3(n 4 1) sin*e/2n)},
and the pinching §7 is given by

in
@n gr—_ (At Dsinfa
8n — 3(n 4+ 1) sin’wx

5. Closed geodesics and Klingenberg’s lemma

We first note that by Theorem 2, all geodesics emanating from o with initial
velocity vector in the orthogonal complement of ¢, in m, are simply closed
and have length 2z.

We now note that exp (2ze,/n)S,, e SU(n), and that 2zxe, /n is the first value
of ¢ for which exp 1S, ¢ SU(n). Also, recall that [9,, S,] = 0. Thus the group
generated by §, D S, = a,_, D R D R is a cylinder with generator SU(n) X R
and ‘base circle of length 2za,/n. Now geodesics in G,/H, through o are
projections of the one parameter subgroups of G, generated by the elements of
m,, and it is easy to see that y(t) = n(expt¢) is a closed (and hence simply
closed [6, Th. 3]) geodesic of length (2z«,/n) sin . Since the maximum
curvature of M? is given by 4 — (3(n + 1)/2n) sin’ @, Klingenberg’s lemma
[6, Th. 1] for odd dimensions would imply

Qra,/n) sina > 2x/{4 — (3(n + 1)/2n) sin® a}'?

from which one implies sin’ @ > 2n/(3n + 3). Thus for sin* @ < 2n/(3n + 3),
Klingenberg’s lemma is false. For sin* « = 2n/(3n + 3) the pinching of M? is
1/9 for all n. One wonders- - -.
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6. Remarks

(A) For any normal Riemannian homogeneous space G/H with orthogonal
decomposition ¢ = § P m, and for any X em, we let Ty = T(X, ) and
By = B(X, )X. We define G/H to be quasi-symmetric if for all X em, Ty
and B, commute. As noted in [3], Ty is skew-symmetric and By is symmetric.
In a quasi-symmetric space, Jacobi’s equations split into subsystems of 2 by
2’s which are easily handled. Indeed, M?" is quasi-symmetric, and it is easy to
see that for dimension 3 all G/H are quasi-symmetric. Are all homogeneous
G/H quasi-symmetric? :

(B) In [3] we proved that if every conjugate point of a simply connected
normal Riemannian G/H of rank one is isotorpic, then G/H is homeomorphic
to a symmetric space of rank one. For the spaces M*, one might say that the
Ad(H ) acts almost transitively on m,. Yet, by Theorem 1, all the points of
the first conjugate locus are non-isotropic. Also, if the linear isotropy is
transitive on unit tangent spheres, the space is Riemannian symmetric (this is
only known heretofore by classification arguments). We therefore

Conjecture. If every conjugate point of a simply connected normal
Riemannian G/H of rank one is isotropic, then G|/H is isometric to a
Riemannian symmetric space of rank one

Added in proof. We note that A. Sagle’s condition for total geodesy of
submanifolds of a reductive Riemannian homogeneous space G/H is only suf-
ficient but not necessary. More preceisely, Sagle’s theorem says what Koba-
yashi’s does not, viz., if T(X,Y), B(X,Y)Zem" for all X,Y,Zem", then
Exp m® is homogeneous relative to a subgroup of G. Inspection as in the proof
of Theorem 2 shows that we have indeed ennumerated all totally geodesic sub-
manifolds of G/H through =(H).
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